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The intermolecular linkages seem to provide good 
evidence in favour of the theory of mesohydric tauto- 
merism given by Hunter  (1946), but  a full discussion of 
the resonance phenomena cannot be a t tempted here. 
I t  is hoped to present this, together with the results of 
further work on the anhydrous form of this compound, 
at a later date. 

The author is indebted to Dr C. H. Carlisle for much 
helpful advice and encouragement throughout the 
course of this work. Acknowledgement is also due to the 
Department  of Scientific and Industrial Research for a 
maintenance grant. 
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The Harker-Kasper inequalities and related ones are applied to the data on oxalic acid dihydrate 
given by Robertson and Woodward. The technique of obtaining some forty signs of the structure 
amplitudes is developed in detail. Some general remarks on the method conclude the paper. 

1. Introduction 
1.1. The main purpose ofthis paper is the application 

of the method of inequalities, due to Harker & Kasper 
(1948), to the determination of the phases of some of the 
structure factors in an actual case. We discuss in § 2 the 
data on oxalic acid dihydrate given by Robertson & 
Woodward (1936). The working will be shown in some 
detail to bring out the various technical ideas which 
have had to be used in the process. In  § 3 we discuss 
some general considerations which emerge from the 
work of § 2, and also some of the wider possibilities of 
the method as well as its limitations. These points are 
further illustrated by another example in § 4. 

1.2. For the sake of completeness we recall here the 
necessary definitions. I f  Fhk ~ represents a general 
structure factor, we define the unitary structure ampli- 

tudes, U~k~, by Uhlct = Fhk~/fhkz. (1"1) 

Herefhkz is a suitable mean atomic scattering factor for 
the hkl direction normalized to make 

U000 = 1. (1.2) 

Uhkt is in fact no other than the quant i ty  a~hkz intro- 
duced by Harker & Kasper and also called ~hkl by the 
present writer (Gillis, 1948). The new symbol has been 
introduced for reasons of typographic simplicity. 

I f  we know the values of ] Fhk~ I, we can easily calcu- 
late those of I Un~zl. Our purpose will be to use this 
lat ter  information to deduce also the phases of the 
Uhk~'s, and these are, of course, the same as the phases 

of the corresponding Fhkt's. In  this paper we shall be 
concerned only with real F~kt's, so tha t  all we have to 
determine is their signs. 

We shall often use a single capital letter to denote 
a triplet; e.g. U~ for Uhkt. Then U2H will represent 
U2h,2k,21 , UH+ H, will stand for Uh+h',k+r,t+t,, etc. We shall 
use the symbol [hkl] to denote the sign of Fhkl, i.e. if 
the phase of Fhk z is 

[hkl] = e %  (1.3) 

As we have already remarked, we shall be dealing in 
this paper only with cases in which [hkl] = +_ 1. 

1.3. Our argument will depend on the following 
inequalities. They are asserted here for the hO1 terms of 
a crystal of space group P21/n , except for (d) which is 
asserted for the Okl terms. (a), (b), (c), (e) and (f) are, 
however, in fact true of all the terms of a centre- 
symmetric crystal, and this fact will be used in § 3. 
Proofs of (a), (b), (c) and (d) have been given by Harker 
& Kasper (1948), and of (e) and (f) by the ~ri ter  (Gillis, 
1948): 

(a) V~t ~< ½(1 + U2H ). 

(b) (UH+ UH,)~<~ (I + UH+,,) (I + UH_H, ). 

(c) (u~-uz.)~<(1-uH+,.)  (1-u,_H.). 
(d) U~kz <~ ¼(1 +_- Uo,~:, o +_ Uo, o,~ ~ + Uo,~k,2~) , 

the _+ sign being taken according as k + 1 is even or odd. 

(e) ] UaH+3U H [a< ½(1 + U2H ) (3+4U2H+ U~)% 

(f) [ Ua~/+3UH [ ~<2(1 + U2H)" 
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2. Oxal ic  acid dihydrate 

2.1. We consider here the data  of gober tson  & 
Woodward (1936). We shall be interested in the hOl 
terms, and we list the values of Un0 t below in Table 2. 
(The reason for grouping the terms in this way will be 
explained in § 2.4.) These values were computed from 
the observed ]F H l's and a mean fH-curve interpolated 
to the values given in Table 1. gober tson & Woodward 
have found this f-curve to be suitable for organic 
crystals of this general type. I t  is obtained by inter- 
polation from the atomic scattering factors of oxygen 
and carbon. 

The crystal has space group C~a-P2~/n. The mole- 
cular formula is C~H20a .2H20. The molecules are 
centro-symmetric and there are two of them per unit  
cell. This makes F00o = 132, and we normalize the fH" 
function accordingly. The lattice constants are 

a=6.12_+0.02, b=3.60_+0.01, c=12.03_+0.03A. 

/? = 106.2 °. 

Table 1. MeanfH.values 
sin 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0"7 
fa~t 132 106 86 70 57 45 34 25 

0.8 
16 

2.2. We now examine these data  in the light of 
relation (a). We observe tha t  (a) implies tha t  

U~. n >1 2 U~H-- 1, 

and so U~. n is certainly positive ff 

] UeH I > 1 - 2 U ~ .  

Applying this test to all relevant pairs (H, 2H) we see 
tha t  the condition is satisfied in the case H = 2 0 2 .  
Hence Ua0,= +0.66. 

2.3. The relations (e) and (f) are, in this case, quickly 
disposed of. We can use them only to test H-values 
such tha t  U H, U2H, U3H all occur in Table 2. This 
limits us to H = 2 0 0 ,  002, 004, 103, 101,101,103,  202. 
We get from (e) the following result: I f  [202] = - 1, then 
[ 1 0 1 ] = - [ 3 0 3 ] .  We shall see later that ,  in fact, 
[202] = - 1, and so the result holds. None of the other 
relevant values of H yields any result at all. 

2.4. We now come to relations (b) and (c). To use 
them we first note tha t  the observed hO1 intensities 
all have h+l  even. Now H + H ' ,  H - H '  differ by 2H',  
i.e. by a set (2h',0,2/') in which 2h' +2 / '  is a multiple of 4. 
On this basis we can divide up our set of H 's  into four 
separate groups with the property tha t  h~Ol~, h~Ol,. 
belong to the same group if and only ifh~ - h~, l~ - l~, and 
½{(h~-h~.) + (l~-l~)} are all even. Then in any applica- 
tion of (b) and (c) both of the U terms on the r ight-hand 
side must  come from the same group. The groups are 
listed in Table 2, each in descending order of magnitude 
ofl v . I .  

We introduce the scheme set out in Table 3. En t ry  
(i) is fairly typical  of the argument embodied in this 
scheme and should make the meaning clear. We take 

507 and 1,0,11 as our H + H' ,  H -  H '  respectively. Then, 
by (b) and (c), 

(U3o~+ U~o2)2 ~< (1 + Uso~)(1 + Ul,o, ii). 

Table 2. The four independent groups of Uhovvalues 

Group 1 
r 

H ]UH[  

1,0,II 0.88 
50~ 0.76 
30§ 0.66 
505 0"33 
501 O-33 
503 0"30 
10~ 0.30 
305 0.27 
101 0.25 
105 0.22 
303 0.08 
30i O.O7 
103 0.05 
307 0.0 
109 0.0 

5,0,YI 0"0 

Group 2 

H I Un[  
503 0.52 
107 0.51 

1,0,11 0.50 
105 0.49 
309 0-45 
103 0.37 
303 0.31 
10§ 0.24 
50~ 0.21 
301 0.20 
10i 0.16 
30~ 0.13 

3,0,II 0.0 
I,O,T3 0.0 

305 0.0 
50i 0.0 
50§ o.o 

Group 3 

H I Un]  
408 0.67 
404 O.66 
2O2 0.57 
206 O.50 
60~ 0.47 
008 0.39 

0,0,12 0.31 
2,0,I0 0.29 

4OO O.26 
40~ 0.12 
20g 0.07 
004 0.01 
202 0.01 

2,0,10 0.0 
4O8 0.0 

4,0,T2 0.0 
602 0-0 
602 o.o 

Group 4 
2~ 

H [ U a [  

0,0,10 0"65 
207~ 0"64 
402 0.63 
006 0.57 
604 0.40 
208 0.37 
600 0.31 
200 0-30 
204 0.23 
402 0.18 
002 0.11 
20~ o.o 

2,0,I2 0.0 
406 0.0 
406 0"0 

4,0,I0 0.0 
60~ 0"0 

Now there are four possible values 
side depending on the signs which 
terms. In  the penultimate column, 

(1+0-76) 

(1+0-76) 

(1 --0.76) 

(I--0.76) 

If  [30§] = [202], we have 

for the right-hand 
we allocate to the 
then, we enter 

(1 +0.88)=3.32,  

(1-0 .88)  =0.21, 

(1 +0.88)=0.45,  

(1 -o.88) =o-o3. 

by (b), 

(U30~+ U202)2 ~< (1 + Ub0~) (1 + ULo, i~), 

and the left-hand side is (0.66+0"57)2=1"51. Hence 
the only possible value for the right-hand side is 3-32, 
i.e. [507]=[1 ,0 ,11]=+1.  On the other hand, if 
[309] = - [202], we can apply (c). Then 

1.51 = (U30~- U202)2 ~ < ( 1 -  Ub0~) (1 - UL0,i~), 

and, by a similar argument,  [507] = [1,0,11] = - 1. The 
whole result can be summed up in the formula 

[507] = [1,0,1i] = [30§] [202]. 

In making the entries in the penultimate column of 
Table 3 we shall always list 

(1 +1 u~+~. I) (1+1 u~_~, 1), 
(1 +l u~+~. l)(1-I u~_~. 1), 
(1-I  v . + ~ .  l) (1 +I u . _ . .  I), 
(1 -I  u~+~. 1) (1-I  u~_.. I), 

in tha t  order. 
As a second example consider (iii). I f  

[507] = [505] = + 1, 
then 

(Us0 i -  U006)~ =0.32 ~ (1-0 .76)  (1-0-33)  =0-16, 
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a n d  th is  is obv ious ly  un t rue .  Similar ly ,  i f  

[507] = [ 5 0 5 ]  = - 1 ,  

t h e n  (U50-1+ U006) ~' = 0.32 ~< 0.16. 

F r o m  these  two  con t rad ic t ions  we see t h a t  

[507] = - [ 5 0 5 ] .  

We proceed wi th  the  fo rmal  t abu la t ion .  Af ter  (xi) of  
Group  1 we b reak  off t he  work  on th is  group since we 
appea r  to  have  exhaus t ed  the  H + H ' ,  H - H '  pairs  
which  can yie ld  in fo rmat ion .  I n  the  t a b u l a t e d  work  on 
Groups  2, 3 a n d  4 we omi t  those  pairs  which have  been  
found  to  lead to  no conclusion;  th i r ty - f ive  such pairs  
were in  fac t  examined .  

was needed  to  decide on which  of  the  symbols  to  choose 
in  th is  way.)  T h e n  we can  use t he  resul ts  o b t a i n e d  in  
Tab le  3 to  express a n u m b e r  of  [h0l]-values in  t e rms  of  
a, b, c, d, e,f. Thus  we soon see t h a t  [303] = d, [400] = - f ,  
[ 1 0 1 ] = a  c, etc. One in te res t ing  fac t  is t h a t  we can  
deduce two forms for the  va lue  of  [105], viz. ae a n d  bcde. 
Hence  ae = bcde, i.e. d =abc. This  enables  us to  express  
our  signs in t e rms  of  a, b, c, e, f alone.  The  resu l t  is 
t a b u l a t e d  in Lis t  1 of  Table  4. The  zero t e rms  are also 
ind ica ted  by  0.. Subsequen t  de t e rmina t i ons  will be  
l is ted in  the  o ther  columns which  we shal l  en te r  f rom 
t ime  to  t i m e  a t  su i table  stages of  the  work.  The  values  
of  ]UH[ have  been inc luded  in th is  t ab le  for con- 
venience.  

H+H" 

Table  3. Systematic application of relations (b) and (c) 

H--H" H H" 

(i) 507 1 ,o,r[ 
(~) 507 300 
(•) 50q 505 
(iv) 507 501 
(v) 1,0,]I 300 
(vi) 1,0,TI 505 
(vii) 1,0,I'[ 501 
(viii) 1,0,IT 503 
(ix) 1,0 I-'[ 107 
(x) 507 503 
(xi) 507 lO7 

(i) 3o9 lO5 
(ii) 503 1,0,11 
(iii) 503 109 
(iv) 107 303 
(v) 1,O,ll I09 
(vi) 1,0,11 301 
(vii) lo5 3o~ 

Group 1 
300 202 1.51< 3.32, 0-21, 0.45, 0.03 
40~ 101 0.06<2.92, 0.60, 0.38, 0.10 
50i 006 0.32<2.34, 1.18, 0.32, 0.16 
50~ 004 0.096<2.34, 1.18, 0.32, 0.16 

2,01-6 101 0.29<3.12, 0.64, 0.20, 0.04 
30~ 208 0.46<2.5, 1.25, 0.16, 0.08 
305 206 0.59<2.5, 1.25, 0.16, 0.08 
307 204 0.13<2.44, 1.32, 0.16, 0.08 
I0~ 002 
505 002 
307 200 

Group 2 
202 107 1.17<2.16, 0.74, 0.82, 0.28 
307 204 0.41 <2.27, 0.76, 0.72, 0.24 
30~ 206 0.66< 1.89, 1.16, 0-60, 0.12 
202 105 1"12< 1"98, 1.04, 0.64, 0"34 
101 0,0,10 0.81< 1"86, 1"11, 0'62, 0-37 
206 105 0"98< 1"8, 1.2, 0"6, 0"4 
204 101 0"79< 1"95, 1"03, 0"67, 0"35 

(i) 408 400 404 
(ii) 404 008 206 
(iii) 404 0,0,12 208 
(iv) 404 2,01-6 303 
(v) 202 606 402 
(vi) 202 0,0,12 107 
(vii) 202 2,0,1-0 204 

Group 3 
004 0.42<1.91, 1.12, 0.42, 0.26 
202 0.24<2.31, 1.02, 0.46, 0.20 
204 1.02<2.18, 1.14, 0-44, 0.23 
107 0.67<2.14, 1.18, 0.43, 0.24 
20~ 1.61<2.31, 0.83, 0.63, 0.23 
10g 1.0<2.6, 1-08, 0.56, 0.30 
006 1.46<2.15, 1.11, 0.55, 0.31 

(i) 0,0,10 200 105 105 
(ii) 204 208 202 006 
(iii) 204 600 40~ 202 
(iv) 40~ 006 202 204 
(v) 604 204 400 20~ 

Group 4 
0.50<2.14, 1.16, 0.46, 0.22 
1.30<2.24, 1.03, 0-49, 0-23 
1-44<2.15, 1.13, 0.48, 0-25 
1.46<2.56, 0.70, 0.58, 0.16 
0.81< 1.72, 1.08, 0.74, 0.46 

2"5. I n  some of  the  cases where we ob t a ined  no con- 
clusion we could in fac t  have  deduced some pa r t i a l  
results .  However ,  these would have  been of  l i t t le  
use a n d  would  in a n y  even t  have  been  superseded by  
t he  more  comple te  resul ts  which  we shall  ob t a in  in due 
course. I t  will  be seen t h a t  a n u m b e r  of  our  conclusions 
were superf luous in t h a t  t h e y  are inc luded in earl ier  
results,  bu t  i t  seemed be t t e r  a t  th is  stage to  follow the  
m e t h o d  t h r o u g h  as a rou t ine  and  leave t i l l  l a te r  the  
sor t ing out  of  the  conclusions.  T h a t  po in t  has  now been  
reached.  

To begin  wi th  set [0,0,10] = a, [006]=b,  [1,0,11] = c, 
[107] = d, [105] = e, and  [408] = f .  (Some t r ia l  and  error  

Conclusion 

[507] = [1,0,1~[] = [300] [202] 
None 
[507]= -[505] 
None 
[1,0,r[] = [2,0,1-0] [101] 
[1,0,IT] = [303] [208] 
[1,0,IT] = [305] [206] 
None 
None 
None 
None 

[309] = [105] = [202] [107] 
[503] = -- [1,0,11] 
[503]=[303] [206] 
[107] = [202] [105] 
[1,0,11]=[101] [0,0,10] 
[206_]=[1,0:11] [301] 
[105]=[204] [101] 

[408] = -- [400] 
[008]= --[404] (---- -- 1) 
[208] = [204] [404] (= [204]) 
[303]=[107] _ 
[202] [606]---- [402] [204] 
[202] = [107] [105] 
[202] = [2,0,Y0] = [204] [006] 

[0,0_,10] = [105]  [105]  
[204]  = [208]  = [202]  [006]  
[204]  = [600]  = [40~] [202]  
[40~]  = [006]  = [202]  [20~]  
[604]  = [400]  [204]  

2.6. Up to  th is  po in t  we have  m a d e  no reference to  
t e rms  whose magn i tudes  have  no t  a c tua l l y  been 
observed.  However ,  we m a y  app ly  the  inequal i t ies  to  
ob ta in  i n fo rma t ion  a b o u t  Four ie r  coefficients f a r t h e r  
out  on the  reciprocal  la t t ice  (which migh t  have  been  
measured  wi th  shor te r  wave- leng th  rad ia t ion)  a n d  t h e n  
use th is  i n fo rma t ion  to  der ive signs of  ac tua l  terms.  
We  now give an  example  of  th is  procedure ,  and  several  
fu r the r  examples  will occur later .  

Since [404] = + 1, [408] = f ,  

we have  (U~o4+fU4os)2= (1.33)2= 1.77. 
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Hence  

a n d  so 

i.e. 

1"77 ~< (1 +fUoo~) (1 +fUs,o,x~), 

1 +fU8,oaz >~ 1"77/1"01 = 1"75, 

1 - f U s ,  oa2 <~ 0"25. 

Table  4. Stages in the determination of the 

H U n L i s t  1 L i s t  2 

2 0 0  0 . 3 0  - -  - -  
4 0 0  0 . 2 6  - - f  a c e  
6 0 0  0 . 3 1  ce ce 
0 0 2  0" 11  - -  - -  

0 0 4  0 . 0 1  ~ 
0 0 6  0 . 5 7  b b 

0 0 8  0 . 3 9  - -  1 - -  1 

0 , 0 , 1 0  0 . 6 5  a a 
0 , 0 , 1 2  0 . 3 1  - -  - -  
1 , 0 , 1 1  0 . 5 0  c c 

1 0 9  0 ~ - -  
1 0 7  0 " 5 1  abc abc 
1 0 5  0 . 2 2  e e 

1 0 3  0 - 3 7  - -  - -  
1 0 1  0 . 2 5  a c  a c  

I0i 0 . 1 6  - -  - -  

1 0 3  0 - 0 5  ~ 
1 0 5  0 . 4 9  ae ae 
1 0 ~  0 . 3 0  ~ 
1 0 §  0 . 2 4  - -  - -  

1 , 0 , Y [  0 . 8 8  abe abe 

1 , 0 , I ~  0 - - -  - -  

2 , 0 , 1 0  0 ~ - -  
2 0 8  0 . 3 7  ce ce 
2 0 6  0 . 5 0  - - a b  - - a b  
2 0 4  0 . 2 3  - -  - -  
2 0 2  0 . 5 7  bce bce 

2 0 ~  0 . 0 1  - -  - -  
20Y~ 0 . 6 4  ce ce 
2 0 ~  0 . 0 7  - -  

2o~ o - -  
2 , 0 , ] : 0  0 " 2 9  bce bce 

2 . 0  f f ' ~  0 ~ - -  
3 0 9  0 . 4 5  ae ae 
3 0 7  0 - -  

3 0 5  0 ~ - -  
3 0 3  0 . 0 8  - -  - -  
3 0 1  0 . 2 0  - - a b c  - -ab~  
3 0 i  0 . 0 7  ~ 
3 0 3  0 . 3 1  abc abc 
3 0 5  0 . 2 7  - -  - -  

3 0 7  0 . 1 3  - -  - -  
30~) 0 . 6 6  a c  ac 

3 , 0  ,II 0 - -  - -  

3 , 0 , I ~  0 - -  - -  
4 0 8  0 . 6 7  f - - a c e  

4 0 6  0 ~ - -  
4 0 4  0 . 6 6  + 1 + 1 

4 0 2  0 . 1 8  ~ - -  
4 0 ]  0 . 6 3  b b 

4 0  y . 0 . 1 2  - -  - -  

4 0 6  0 ~ - -  
4 0 ~  0 - -  - -  

4 . 0  , ] -6  0 - -  - -  
4 , 0 , I 2  0 ~ - -  

5 0 5  0 " 3 3  ~ 
5 0 3  0 . 5 2  - - c  - - c  

5 0 1  0 . 3 3  - -  - -  

5oi o - -  - -  
5 0 ~  0 . 3 0  - -  - -  
5 0 5  0 - 2 1  - -  
5 0 7  0 . 7 6  abe abe 

50§ o - -  
5 , 0  , I I  0 ~ 

6 0 2  0 - -  - -  
6 0 ~  0 ~ - -  
6 0  y , 0 " 4 0  -- ce f  a 
6 0 6  0 . 4 7  bce bce 

6 0 8  0 - -  - -  

signs of Uho~ 

L i s t  3 L i s ~  4 

- -  - - a  

+ 1  + 1  
a a 

- - a  

- - a  - - a  

- - 1  - - 1  
a a 

c 

- -  0 

- - 0  - - C  
a c  a ¢  

- -  - - c  

ac ac  

C C 

C 
- - a ¢  - - a c  

- -  0 

- -  0 

a a 

+ 1  + 1  

- - 1  - - 1  

a a 

- -  0 

- - 1  - - 1  
0 

0 C 

- -  0 

- -  0 

o C 

- -  - - a c  

- -  o 

a c  a c  

0 

- -  0 

- - 1  - - 1  

0 

+i +I 

-- 0 
-- 0 

0 
0 

~C --C 

0 

C 

--OA3 --a¢ 

0 
0 
0 
0 

--I --i 
0 

A C I  

I t  follows t h a t  

( Uso3- fU3o9) 2 < (I - fU2o~) ( 1  -fUs,o,i~) 
1.07 × 0.25 

= 0 . 2 7 .  

B y  the  fami l ia r  a r g u m e n t  we deduce  t h a t  [503] = f [309] .  
Compar ing  this  wi th  Lis t  1 we see t h a t  - c  = aef, i.e. 

f =  -ace .  Subs t i t u t i on  of  th is  va lue  o f f  in Lis t  1 gives 

us Lis t  2. 
W i t h  these  resul ts  one can  easi ly cont inue  a n d  der ive  

m a n y  more  signs. The  f u n d a m e n t a l  s tep is a r epea t ed  
' t r i a l - a n d - e r r o r '  appl ica t ion  of  re lat ions (b) a n d  (c), 
t h o u g h  wi th  exper ience  one soon learns to reduce  t he  
n u m b e r  of  errors  a n d  so the  to t a l  n u m b e r  of  tr ials.  
Essen t ia l ly  w h a t  one s t r ives  for  is the  a r t  of  knowing  
which pairs  are  l ikely to r e p a y  inves t iga t ion .  

2.7. W e  proceed wi th  the  a r g u m e n t .  
(i) Since [107] = - [ 3 0 1 ] ,  we have  

° ( U 1 0 7 -  U301)  2 = 0.50. 

Hence  1 - U4o s >/0.50/(1 - U2o~) 

>~o.5o/1.o7 

=0 .47 .  

B u t  [ Uaos l=0"67 a n d  hence [ 4 0 8 ] = - 1 .  I t  follows 
inc identa l ly  t h a t  ace -- + 1, i.e. e = ac. 

(ii) B y  a s imilar  a r g u m e n t ,  

1 - b U 2 o i  t> ( U2o6  - b Uo, o,lo)2/(1 --  b U2,oae) 

>/1.32/2, using Lis t  2 a n d  the  fac t  t h a t  

I U H I 4  1 for eve ry  H ,  

= 0 . 6 6 .  

H e n c e  [205] = - b. 

I t  follows f rom Lis t  2 t h a t  b = -  ce, i.e. e = - b c .  B y  
compar i son  wi th  (i) we see t h a t  b = - a .  These  resul ts  
enable  us to  express  all our  signs in t e rms  of  a a n d  c, 
and ,  for  the  sake of  s implici ty ,  we do so in Lis t  3. 

(iii) ( U l o i -  U5o3)~ < (1 - U6o~) (1 - U4o~)=0"34, 

a n d  so [10T] = [503] = - c. 

( i v )  1 - Ulo, o,~ >1 ( U 4 o ~ -  U6o~)2/(1 - U2oi)  

>/(1.03)~/1.01 = 1.05, 

a n d  so 1 + Ulo, o.~ <. 0.95. 

Hence  (Uso 1 + Uso-) 2 ~< (1 + Uoos) (1 + Ulo, o.~) 
4 0 . 6 1  × 0 . 9 5 = 0 . 5 8 .  

I t  follows t h a t  [501] = - [ 5 0 7 ]  = a c .  

(v) B y  the  now fami l ia r  a rgumen t s ,  

[503] = - ac[408] =ac, 

a n d  [103] = - [105] = - c. 

(vi) 1 - cUgoa >~ (U4o4- cUsoi)~/( 1 - cUlog) 
= (0.66)~/0.51 =0"85,  

a n d  so 1 -}-cUgoa ~ 1.15. 
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Hence (Usos+cU4o~) 9~ (1 +cUgoa) (1 +cUlo~) 

~< 1.15 × 0"49=0.56, 
and it follows that  

[505] = -- c[402] ----ac. 

(vii) Since we know that  [202] = - 1, we deduce from 
§ 2.3 tha t  [303] = - [101]  = - a c .  

(viii) By  arguments which are now quite familiar we 
can show tha t  

[200]= - a ,  [0,0,12]---1,  

[305] = - a c ,  [307] =c, 

[107] = - ac, [002] = - a, 

[402] =a, [505] =c. 

(ix) 1 - CUl,o,~. i ~ ( Ul,o,~l - cUo,o,lO)2/(1 - cU10i) 

= (1"53)2/1-16 = 2"00. 

Hence I Ul,o-2i[= 1 and [1,0,2-1] = - c .  I t  follows that  
(U10i-t- c U0,0,12) 2 = 0 and therefore [109] = - c[0,0,12] = c. 

We must  point out here tha t  we have nowhere used 
more than two places of decimals. Indeed, the approxi- 
mate nature of the assumptions underlying our whole 
theory would have rendered futile any higher accuracy 
of arithmetic. In  these circumstances the assertion 
that  I UL0,~ [ = 1 need not perhaps be as startling as it 
may  at  first appear. The physical significance of the 
result will be discussed in § 3.1. 

2.8. We have tabulated in List 4 of Table 4 the 
information accumulated at  this stage. I t  will be seen 
tha t  the signs of all except the smallest of the terms U H 
have been established, at  least in terms of the unknown 
quantities a and c. The question of the values of these 
unknown quantities will be discussed in §§ 3-2 and 3-3. 

2.9. Alternative derivation. In the above analysis we 
could have obtained the sign of [008] directly at the 
beginning by applying inequality (d) of § 1.3 to U014. 
We can compute from the original data  the following 
values: 

H [ U ~ I  

014 0.48 
020 0-18 
028 0 

and we already know tha t  ]U00 s [=0-39. Hence 
0.23 ~< ¼(1 ± 0.18 ± 0.39), and this cannot be satisfied 
unless the sign of the 0.39 term is positive, i.e. 

[008] = - 1. 

Since the whole theory is based on approximations, 
it is useful to get such confirmations from independent 
inequalities. 

3. Some general considerations 
3.1. Application of the method to structure determina- 

tion. There is a rather curious incidental way in which 
this method may  provide direct preliminary informa- 
tion before any Fourier summation has been per- 
formed. We saw above in § 2.7 t h a t - - t o  the accuracy 
of the theory--[  Ul,o,~i I = 1. Physically this means tha t  

almost all of the scattering mat ter  is concentrated very 
near to the 1,0,2i planes. Such inexact and incomplete 
information can never solve a structure, but  it may  well 
be of valuable assistance as a guide, and it is interesting 
tha t  we can use the method of inequalities to derive this 
knowledge about a set of planes whose reciprocal-lattice 
point did not intersect the sphere of reflexion. 

In this case the information can be verified directly 
from the solved structure. A point lies near one of the 
],0,21 planes if its lattice co-ordinates are such tha t  
x / a - 2 1 z / c  is nearly an integer. In Table 5 we quote 
from the paper of Robertson & Woodward the co- 
ordinates of certain specified atoms. In the last column 
we give the value of the linear form under discussion. 
The other atoms of the structure are obtained from 
those listed by the operations of the symmetry  elements 
of the space group, and so will give values for the 
expression differing by an integer from + the quan- 
tities in the last column. The agreement is seen to be 
fairly good 

Table 5. Co-ordinates of certain atoms in oxalic 
acid dihydrate 

A t o m  x y z x / a - -  21z/c 

C - - 0 . 2 2  0.12 0.61 - -  1-1 
O (1) 0.52 - - 0 . 2 0  1-78 - - 3 - 0  
O (2) - -  1.39 0.77 0-42 - -  1.0 
H 2 0  (3) - - 2 . 7 6  --  1.41 2.15 - - 4 . 2  

3.2. The value of c. The fact is tha t  c is not deter- 
minable by these or any other algebraic methods. I t  is 
clear from the forms of the inequalities of § 1.3 tha t  we 
cannot derive the sign of any Uh0~ with odd h, 1 unless 
we already know the sign of at least one such term. In 
fact, if we have a set of signs for the odd terms such tha t  
all the inequalities are satisfied, then the inequalities 
will remain satisfied if we change the signs of all these 
odd terms. 

Physically this corresponds to the fact tha t  to 
multiply all the odd terms by - 1  would not change 
the structure but would simply change the origin to 
a different centre of symmetry.  We should always get 
such indeterminate signs in eases where the space group 
operations give several equivalent centres of symmetry  
in the one unit cell. 

I f  we give c the value - 1 ,  we see tha t  all our signs 
agree with those derived from the structure by Robert- 
son & Woodward. 

3.3. Patterson's ambiguities. The existence of these 
ambiguities (Patterson, 1939,1944; Pauling & Shappell, 
1930; Robertson, 1945) precludes any hope tha t  we 
might be able, by suitably extending these or similar 
methods, to solve a structure directly from the [ F ~  I's 
by algebraic processes alone. However, what might 
still happen in practice is tha t  we might be able to 
express a number of the signs in terms of unknown 
quantities a, b, ..., etc. The ambiguities may  well be 
expressed by the fact tha t  some or all of these quantities 
are not algebraically determinable. In tha t  case we 
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should have to use other (chemical, etc.) information to 
find some of the signs and so deduce the values of 
a, b, .... Alternatively, if there are not too many of these 
quantities, we might be able to test the various possi- 
bilities separately to see which made chemical sense. 

Either of these methods would suffice to determine a 
in the case discussed in § 2 above. 

3-4. The margin of inequality. There were many 
instances during the work in § 2 in which both signs 
satisfied an inequality, one by a comfortable margin 
and the other by a relatively narrow margin. In almost 
all such cases it was the former sign which was the 
correct one. This suggests that  the method may have 
'reserves of power'  in the sense tha t  stronger in- 
equalities than those used are in fact satisfied. 

One possible explanation is that  a temperature effect 
reduces the total  number of electrons taking part  in a 
reflexion. The result would presumably be to make the 
observed value of [ F H I less than that  predicted by the 
trigonometric polynomial by a factor of the form 

exp [ -  M{(sin 0)/h}2], 

where M is some positive constant. We should then be 
justified, before applying our inequalities, in first multi- 
plying each I UH I by 

exp[  + M{(sin O)/h}~]. 

The difficulty is, of course, tha t  we cannot know the 
correct value of M so long as we know nothing of the 
structure, and it is precisely when we start  from such 
a state of ignorance tha t  we most need the inequalities 
method. However, it should not be difficult to exercise 
judgement. There is an obvious upper limit set to M 
by the fact tha t  none of the I UH [ 's, when multiplied, 
may  exceed 1. Moreover, experience of a number of 
trials has led the writer to the conclusion tha t  an 
excessive value of M will inevitably reveal itself by 
leading to mutual ly inconsistent derivations of signs. 
So long as the results have been entirely self-consistent 
they have always proved to be correct. 

4. Phosphorus pentachloride 
4.1. In  considering the data  of Clark, Powell & 

Wells (1942) on phosphorus pentachloride we tried in- 
creasing the I UH ['s by the factor exp [1.6{(sin 0)/A}2]. 

I t  was then possible to proceed with methods much 
like those described in § 2, though the higher symmetry  
of the tetragonal space group yielded some extra in- 
equalities which proved useful. 

4.2. One further point which emerged seems worth 
noting. We had, among others, the following values: 

H l u l l  
O02 O.O4 
0O4 0.79 
006 0-41 

Now it was possible to show by an argument of the 
familiar type that [004]=- 1. We could then apply 
inequality (e) of § 1.3. 

I 3u002+ u006 I<2(1 + u00~) 
=0-42, 

and so [002] = - [006]. 
This illustrates an important  feature of inequalities 

like (d) and (e). The U H with lowest suffix is multiplied 
by some coefficient greater than 1 (in this case 3). This 
may enable U H to play a significant role also itself quite 
small. The effect is important  for the lower order terms 
since, for small values of 0, f i t  may be large and so 
I UH[ will be small although I FH [ itself may be 
relatively large and its sign correspondingly important.  

In conclusion, the writer must express his grati tude 
for some editorial advice which led to the introduction 
of what system there is in the working of § 2. Also some 
of the remarks in § 3.2 were suggested by observations 
made by Sir Lawrence Bragg and others at  a discussion 
in the Cavendish Laboratory.  
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